Interactional and functional centrality in transcriptional co-expression networks
نویسندگان
چکیده
منابع مشابه
Interactional and functional centrality in transcriptional co-expression networks
MOTIVATION The noisy nature of transcriptomic data hinders the biological relevance of conventional network centrality measures, often used to select gene candidates in co-expression networks. Therefore, new tools and methods are required to improve the prediction of mechanistically important transcriptional targets. RESULTS We propose an original network centrality measure, called annotation...
متن کاملModeling and Analyzing Gene Co-Expression in Hepatocellular Carcinoma Using Actor-Semiotic Networks and Centrality Signatures
Primary hepatocellular carcinoma (HCC) is currently the fifth most common malignancy and the third most common cause of cancer mortality worldwide. Because of its high prevalence in developing nations, there have been numerous efforts made in the molecular characterization of primary HCC. However, a better understanding into the pathology of HCC required software-assisted network modeling and a...
متن کاملFunctional centrality: detecting lethality of proteins in protein interaction networks.
Identifying lethal proteins is important for understanding the intricate mechanism governing life. Researchers have shown that the lethality of a protein can be computed based on its topological position in the protein-protein interaction (PPI) network. Performance of current approaches has been less than satisfactory as the lethality of a protein is a functional characteristic that cannot be d...
متن کاملPrestige centrality-based functional outlier detection in gene expression analysis
MOTIVATION Traditional gene expression analysis techniques capture an average gene expression state across sample replicates. However, the average signal across replicates will not capture activated gene networks in different states across replicates. For example, if a particular gene expression network is activated within a subset or all sample replicates, yet the activation state across the s...
متن کاملDiscovering Functional Modules by Clustering Gene Co-expression Networks
Identification of groups of functionally related genes from high throughput gene expression data is an important step towards elucidating gene functions at a global scale. Most existing approaches treat gene expression data as points in a metric space, and apply conventional clustering algorithms to identify sets of genes that are close to each other in the metric space. However, they usually i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2010
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btq591